特殊锐角三角比的值是多少?

发布网友 发布时间:2022-04-22 05:57

我来回答

1个回答

热心网友 时间:2023-08-14 09:20

直角三角形三边比是3比4比5,角度分别为∠C=90°,∠B=53°(近似值),∠A=37°(近似值)。

由正弦定理可知,较小锐角的正弦=对边/斜边=3/5=0.6,再由三角函数可得sinA=0.6,则∠A=37°(近似值)。又根据直角三角形的特殊性质,直角三角形的两个锐角互余。那么较大锐角即为90°-37°=53°

扩展资料

一、直角三角形斜边公式

如已知一条直角边和一个锐角,可用直角三角函数计算斜边。

直角三角形ABC的六个元素中除直角C外,其余五个元素有如下关系:

∠A+∠B=90°

sinA=(∠A的)对边/斜边

cosA=(∠A的)邻边/斜边

tanA=(∠A的)对边/邻边

二、直角三角形特殊性质

1、直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则AB²+AC²=BC²(勾股定理)

2、在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°

3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。

4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com