发布网友 发布时间:2024-10-24 17:46
共1个回答
热心网友 时间:2024-11-01 20:56
(Ⅰ)∵Sn=n2+2n,
∴当n≥2时,an=Sn-Sn-1=n2+2n-[(n-1)2+2(n-1)]=2n+1,
当n=1时,a1=3,也符合上式,
∴an=2n+1;
(Ⅱ)由题意知bn=2bn-1+1,∴bn+1=2(bn-1+1)(n≥2),
∴bn+1bn?1+1=2
∵b1+1=2,∴{bn+1}是2为首项,2为公比的等比数列,
∴bn+1=2?2n-1=2n.
∴bn=2n-1.
(Ⅲ)∵cn=an(bn+1)=(2n+1)?2n,
∴Tn=c1+c2+…+cn
=3×2+5×22+7×23+…+(2n+1)?2n,①
2Tn=3×22+5×23+…+(2n-1)?2n+(2n+1)?2n+1,②
①-②得:-Tn=3×2+23+24+…+2n+1-(2n+1)?2n+1
=2(1?2n+1)1?2-(2n+1)?2n+1
=2n+2-(2n+1)?2n+1-2,
∴Tn=(2n-1)×2n+1+2.