发布网友 发布时间:2024-10-24 11:36
共3个回答
热心网友 时间:2024-11-09 08:57
解:f(x)=cos²0.5x-sin²0.5x+sinx=cosx+sinx=√2(√2/2cosx+√2/2sinx)
=√2(sinπ/4cosx+cosπ/4sinx)=√2sin(x+π/4)
(1)所以f(x)的最小正周期为:T=2π
(2)当x属于(0,0.25π)时,x+π/4属于(0,π/2)
所以f(x)在(0,0.25π)上单调递增
因为f(x。)=4√2/5
即:cosx。+ sinx。=4√2/5
由cos²x。+ sin²x。=1
解得:sinx。=√2/10,cosx。=7√2/10
∴f(x。+π/6)=cos(x。+π/6)+ sin(x。+π/6)
=cosx。cosπ/6-sinx。sinπ/6+sinx。cosπ/6+cosx。sinπ/6
=(7√2/10)×(√3/2)-(√2/10)×(1/2)+(√2/10)×(√3/2)+(7√2/10)×(1/2)
=2√6/5+3√2/10
热心网友 时间:2024-11-09 09:01
复杂...
热心网友 时间:2024-11-09 09:04
1231