关于高等数学下中的多元函数的极值及其求法?

发布网友 发布时间:2022-04-22 01:10

我来回答

2个回答

热心网友 时间:2023-09-27 04:24

多元函数的极值及其求法如下:

1、利用极限四则运算性质或者函数连续性求极限。

2、利用恒等变形求极限,主要是消去分母中极限为零的因子(分子分母有理化)。

3、利用等价无穷小求极限。

4、利用无穷小量与有界量的乘积仍为无穷小量求极限。

5、利用夹*准则。

6、利用两个重要极限。

7、利用极坐标法。

8、利用取对数法。

9、运用洛必达法则求二元函数的极限。

10、利用二元函数极限定义求二元函数极限。

例如:

已知2/x+1/y=1,求x+y的最大值。用多元函数求最值,则过程如下:

设F(x,y)=x+y+λ(2/x+1/y-1),

分别对参数求偏导数得:

Fx=1-2λ/x^2,Fy=1-λ/y^2,

Fλ=2/x+1/y-1。

令Fx=Fy=Fλ=0,则:

x^2=2λ, y^2=1λ,

x=√2λ,y=√λ。

代入得方程:

√2/√λ+1/√λ=1,

√λ=(√2+1),

则:x+y的最大值

=(√2+1)*√λ

=(√2+1)^2

=3+2√2。

热心网友 时间:2023-09-27 04:25

简单分析一下,详情如图所示

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com