发布网友 发布时间:2022-04-21 10:16
共2个回答
热心网友 时间:2023-10-03 21:55
二叉树的层次遍历算法有如下三种方法:
给定一棵二叉树,要求进行分层遍历,每层的节点值单独打印一行,下图给出事例结构:
对此二叉树遍历的结果应该是:
1,
2 , 3
4, 5, 6
7, 8
第一种方法,就是利用递归的方法,按层进行打印,我们把根节点当做第0层,之后层次依次增加,如果我们想打印第二层怎么办呢,利用递归的代码如下:
[cpp] view plaincopy
int print_at_level(Tree T, int level) {
if (!T || level < 0)
return 0;
if (0 == level) {
cout << T->data << " ";
return 1;
}
return print_at_level(T->lchild, level - 1) + print_at_level(T->rchild, level - 1);
如果我们成功的打印了给定的层次,那么就返回非0的正值,如果失败返回0。有了这个思路,我们就可以应用一个循环,来打印这颗树的所有层的节点,但是有个问题就是我们不知道这棵二叉树的深度,怎么来控制循环使其结束呢,仔细看一下print_at_level,如果指定的Tree是空的,那么就直接返回0,当返回0的时候,我们就结束循环,说明没有节点可以打印了。
[cpp] view plaincopy
void print_by_level_1(Tree T) {
int i = 0;
for (i = 0; ; i++) {
if (!print_at_level(T, i))
break;
}
cout << endl;
}
以上的方法可以很清楚的看出,存在重复访问的情况,就是第0层访问的次数最多,第1层次之。所以这个递归的方法不是很有效的方法。
第二种方法:我们可以设置两个队列,想象一下队列的特点,就是先进先出,首先把第0层保存在一个队列中,然后按节点访问,并把已经访问节点的左右孩子节点放在第二个队列中,当第一个队列中的所有节点都访问完成之后,交换两个节点。这样重复下去,知道所有层的节点都被访问,这样做的代价就是空间复杂度有点高。
[cpp] view plaincopy
void print_by_level_2(Tree T) {
deque<tree_node_t*> q_first, q_second;
q_first.push_back(T);
while(!q_first.empty()) {
while (!q_first.empty()) {
tree_node_t *temp = q_first.front();
q_first.pop_front();
cout << temp->data << " ";
if (temp->lchild)
q_second.push_back(temp->lchild);
if (temp->rchild)
q_second.push_back(temp->rchild);
}
cout << endl;
q_first.swap(q_second);
}
}
第三种方法就是设置双指针,一个指向访问当层开始的节点,一个指向访问当层结束节点的下一个位置:
这是第一层访问的情况,当访问第0层之后的结构如下,把第0层的所有子节点加入之后:
访问完第1层之后:
之后大家就可以自己画图了,下面给出程序代码:
[cpp] view plaincopy
void print_by_level_3(Tree T) {
vector<tree_node_t*> vec;
vec.push_back(T);
int cur = 0;
int end = 1;
while (cur < vec.size()) {
end = vec.size();
while (cur < end) {
cout << vec[cur]->data << " ";
if (vec[cur]->lchild)
vec.push_back(vec[cur]->lchild);
if (vec[cur]->rchild)
vec.push_back(vec[cur]->rchild);
cur++;
}
cout << endl;
}
}
最后给出完成代码的测试用例:124##57##8##3#6##
[cpp] view plaincopy
#include<iostream>
#include<vector>
#include<deque>
using namespace std;
typedef struct tree_node_s {
char data;
struct tree_node_s *lchild;
struct tree_node_s *rchild;
}tree_node_t, *Tree;
void create_tree(Tree *T) {
char c = getchar();
if (c == '#') {
*T = NULL;
} else {
*T = (tree_node_t*)malloc(sizeof(tree_node_t));
(*T)->data = c;
create_tree(&(*T)->lchild);
create_tree(&(*T)->rchild);
}
}
void print_tree(Tree T) {
if (T) {
cout << T->data << " ";
print_tree(T->lchild);
print_tree(T->rchild);
}
}
int print_at_level(Tree T, int level) {
if (!T || level < 0)
return 0;
if (0 == level) {
cout << T->data << " ";
return 1;
}
return print_at_level(T->lchild, level - 1) + print_at_level(T->rchild, level - 1);
}
void print_by_level_1(Tree T) {
int i = 0;
for (i = 0; ; i++) {
if (!print_at_level(T, i))
break;
}
cout << endl;
}
void print_by_level_2(Tree T) {
deque<tree_node_t*> q_first, q_second;
q_first.push_back(T);
while(!q_first.empty()) {
while (!q_first.empty()) {
tree_node_t *temp = q_first.front();
q_first.pop_front();
cout << temp->data << " ";
if (temp->lchild)
q_second.push_back(temp->lchild);
if (temp->rchild)
q_second.push_back(temp->rchild);
}
cout << endl;
q_first.swap(q_second);
}
}
void print_by_level_3(Tree T) {
vector<tree_node_t*> vec;
vec.push_back(T);
int cur = 0;
int end = 1;
while (cur < vec.size()) {
end = vec.size();
while (cur < end) {
cout << vec[cur]->data << " ";
if (vec[cur]->lchild)
vec.push_back(vec[cur]->lchild);
if (vec[cur]->rchild)
vec.push_back(vec[cur]->rchild);
cur++;
}
cout << endl;
}
}
int main(int argc, char *argv[]) {
Tree T = NULL;
create_tree(&T);
print_tree(T);
cout << endl;
print_by_level_3(T);
cin.get();
cin.get();
return 0;
}
热心网友 时间:2023-10-03 21:55
创建一个队列q;
将根放入队列;
while(队列非空)
{
从队列取出一个元素并访问;
如果该元素有右子树就将它放入队列;
如果该元素有左子树就将它放入队列;
}