发布网友 发布时间:2022-04-22 15:37
共1个回答
热心网友 时间:2023-09-23 20:05
目前投了的有TX(offer) 海康威视(offer sp) DJI(offer sp) 头条(挂) 阿里(ssp) MSRA(等消息,但hr透露不乐观)我就介绍下我自己的一些感受,可能不一定对,但也许会帮到大家。我觉得一定要做算法的话一定要明确下面几点:
1. 不要一直盯着互联网公司,很多硬件公司也需要算法,而且是刚需。
2. 千万不要认为视觉算法就不用刷题了,这种必跪(我头条就没刷,就是例子)
3. 不是说搞dl的就不用管频域那些传统方法了。就比如我不止一次被问到canny算法的具体实现方法(我还是做3D的)。 我感觉可能是真正落地的时候不可能让你直接dl end2end的。dl只会是一个pipeline的核心的小部件,剩下的还是需要人为先验更强的传统方法的。
4. 最好能对一些论文里或者实验中反直觉的方法有一些深刻的理解,最好能直接到硬件层面。举个例子 mobilenet v2明明flops比 resnet18低那么多,为啥电脑跑起来不会更快?又为啥放移动端就会快很多?
5. 我觉得比起论文,面试官更喜欢在知名排行榜上有个好名次的方法。
6. 实习真的很重要,尤其是大厂实习(比如阿里面试官就说,他能捞我简历看上的根本不是啥paper啥排行榜。。人家是觉得MSRA培养的方*很好。。)
7. 大家现在很多都过了那种刷论文,刷排行榜的阶段了,都讲落地。这意味着你要是不懂轻量级网络,剪枝蒸馏算法的sota,你会很吃亏。同时,如果你有嵌入式经验和cuda经验,你会很加分。
8. 拉宽知识面。。没事就去读读别的方向的paper总会有好处。
最后无论从事开发岗,还是在算法领域,知识的更替速度快,不持续学习跟进前沿技术,就会被淘汰。算法工程师本质上也是工程师,不要因为你是算法而有所谓的优越感,数学模型技能只是一方面,没有扎实的工程能力,也走不远。尤其是AI近几年的火爆,算法的门槛也变低,造成越来越多的人涌入算法岗。等到AI退潮之后,你扎实的基础工程能力和业务能力才是生存下来的必要条件吧。