发布网友 发布时间:2022-04-23 03:54
共4个回答
热心网友 时间:2022-04-27 18:20
一、利用等式的性质解方程。
因为方程是等式,所以等式具有的性质方程都具有。
1、方程的左右两边同时加上或减去同一个数,方程的解不变。
2、方程的左右两边同时乘同一个不为0的数,方程的解不变。
3、方程的左右两边同时除以同一个不为0的数,方程的解不变 。
二、两步、三步运算的方程的解法
两步、三步运算的方程,可根据等式的性质进行运算,先把原方程转化为一步求解的方程,在求出方程的解。
三、根据加减乘除法各部分之间的关系解方程。
1、根据加法中各部分之间的关系解方程。
2、根据减法中各部分之间的关系解方程
在减法中,被减速=差+减数。
扩展资料
解方程步骤
⑴有分母先去分母
⑵有括号就去括号
⑶需要移项就进行移项
⑷合并同类项
⑸系数化为1求得未知数的值
⑹ 开头要写“解”
例如:
3+x=18
解:x=18-3
x=15
热心网友 时间:2022-04-27 19:38
1
、列一元一次方程解应用题的一般步骤:
审题。分析题中已知量、未知量,明确各个量之间的关系;
设未知数,用字母(如
X
)表示题目中的一个未知数;
找出能够表示应用题全部含义的一个等量关系;
根据这个等量关系列出所需的代数式,从而列出方程;
解这个方程,
,求出未知数的值;
检验所求解是否符合题意、写出答案(包括单位名称)
概括地说,列一元一次方程解应用题,一般有“审、设、找、解、答”
六个步骤,其中“列”是关键,难点是找等量关系。要抓住关键,突破难
点,
一定要开动脑筋、
勤于思考、
努力提
高分析问题和解决问题的能力。
2
、设未知数的方法。未知数设得是否巧妙,直接决定了列方程的难易
程度,即“设”与“列”的巧妙结合。
设未知数的常用方法有两种___直接设元法和间接设元法
(辅助未知
数法或参数法)
。使用哪一种方法关键是看哪一个未各量与其他相关量有
直接的关系,
是否更容易列出代数式表示其他相关的量,
有时设一个未知
量不能直接表示时同可以再设其他辅助未各量,以便容易地列出方程。
3
、列一元一次方程解应用题的几种常见题型用其特点。
各、差、倍分问题。此问题中常用“多、少、大、小、几分之几”
或“增加、减少、缩小”等等词语体现等量关系。审题时要抓住
关键词,确定标准量与比校量,并注意每个词的细微差别。
等积变形问题。
此类问题的关键在“等积”上,是等量关系的所在,必须掌握常见几
何图形的而积、体积公式。
调配问题。
从调配后的数量关系中找等量关系,常
见是“和、差、倍、分”关
系,要注意调配对象流动的方向和数量。
比列分配问题、
要掌握行程中的基本关系:
路程=速度
热心网友 时间:2022-04-27 21:13
一、利用等式的性质解方程。
因为方程是等式,所以等式具有的性质方程都具有。
1、方程的左右两边同时加上或减去同一个数,方程的解不变。
2、方程的左右两边同时乘同一个不为0的数,方程的解不变。
3、方程的左右两边同时除以同一个不为0的数,方程的解不变 。
二、两步、三步运算的方程的解法
两步、三步运算的方程,可根据等式的性质进行运算,先把原方程转化为一步求解的方程,在求出方程的解。
三、根据加减乘除法各部分之间的关系解方程。
1、根据加法中各部分之间的关系解方程。
2、根据减法中各部分之间的关系解方程
在减法中,被减速=差+减数。
扩展资料
解方程步骤
⑴有分母先去分母
⑵有括号就去括号
⑶需要移项就进行移项
⑷合并同类项
⑸系数化为1求得未知数的值
⑹ 开头要写“解”
例如:
3+x=18
解:x=18-3
x=15
热心网友 时间:2022-04-27 23:04
≠-一厂广一人-鼠·继⑩建匕丢区