发布网友 发布时间:2022-04-22 13:24
共3个回答
热心网友 时间:2022-05-13 01:35
一元线性回归其实就是最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。
利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
根据最小平方法或其他方法,可以从样本数据确定常数项A与回归系数B的值。A、B确定后,有一个X的观测值,就可得到一个Y的估计值。
回归方程是否可靠,估计的误差有多大,都还应经过显著性检验和误差计算。有无显著的相关关系以及样本的大小等等,是影响回归方程可靠性的因素。
扩展资料:
在给定了X和Y的样本观察值之后,离差平方总和的大小依赖于a和b的取值,客观上总有一对a和b的数值能够使离差平方总和达到最小。利用微分法求函数极值的原理。
在线性回归中,数据使用线性预测函数来建模,并且未知的模型参数也是通过数据来估计。这些模型被叫做线性模型。最常用的线性回归建模是给定X值的y的条件均值是X的仿射函数。
不太一般的情况,线性回归模型可以是一个中位数或一些其他的给定X的条件下y的条件分布的分位数作为X的线性函数表示。像所有形式的回归分析一样,线性回归也把焦点放在给定X值的y的条件概率分布,而不是X和y的联合概率分布(多元分析领域)。
参考资料来源:百度百科——一元线性回归方程
热心网友 时间:2022-05-13 02:53
一元线性回归的数学原理为:一元线性回归也可以叫做最小二乘法,这种乘法也叫做最小平方法,它是一种数学优化的技术。一般会经由最小化误差的平方与寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。
估计方法很多,最小二乘只是其中一种。具体原理如果没有学过偏导数就不必深究了。
另外,一元线性回归的回归分析通常会牵扯到两个变量的,被称为一元回归分析。医院回归的主要任务是把两个相关变量中的一个变量去估计另一个变量,被估计的变量,称因变量,可设为Y;估计出的变量,称自变量,设为X。回归分析就是要找出一个数学模型Y=f(X),使得从X估计Y可以用一个函数式去计算。当Y=f(X)的形式是一个直线方程时,称为一元线性回归。
这个方程一般可表示为Y=A+BX。根据最小平方法或其他方法,可以从样本数据确定常数项A与回归系数B的值。A、B确定后,有一个X的观测值,就可得到一个Y的估计值。回归方程是否可靠,估计的误差有多大,都还应经过显著性检验和误差计算。有无显著的相关关系以及样本的大小等等,是影响回归方程可靠性的因素。
热心网友 时间:2022-05-13 04:28
一元线性回归其实就是最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。估计方法很多,最小二乘只是其中一种。具体原理如果没有学过偏导数就不必深究了。